

Feb 19-8:47 AM

The height of a triangle increases @ $1 \mathrm{~cm} / \mathrm{min}$. The area increases @ $2 \mathrm{~cm}^{2} / \mathrm{min}$.
At what rate its base changing when $h=10 \mathrm{~cm}$,

An inverted conical tank is leaking water
at rate of $10000 \mathrm{~cm}^{3} / \mathrm{min}$. $\frac{d V}{d t}=-10,000 \mathrm{~cm}^{3} / \mathrm{min}$
height is $6 \mathrm{~m} \varepsilon$. diameter
on top is 4 m .
At what rate the water
level decreasing when
$\frac{h}{r}=\frac{h}{2} \quad \frac{h}{r}=3 \rightarrow h=3 r$ water level is $3 m$?
$V=\frac{1}{3} \pi r^{2} h \rightarrow V=\frac{1}{3} \pi\left(\frac{h}{3}\right)^{2} \cdot h$
$V=\frac{\pi}{27} h^{3} \quad \frac{d V}{d t}=\frac{\pi}{27} \cdot 3 h^{2} \cdot \frac{d h}{d t}$
$-10000=\frac{\pi}{27} \cdot 3 \cdot(300)^{2} \cdot \frac{d h}{d t}$
$-10000=\frac{\pi}{27} \cdot x, 90000 \cdot \frac{d h}{d t}$
$\frac{d h}{d t}=\frac{-1}{\pi} \mathrm{~cm} / \mathrm{min}$.

Oct 26-10:34 AM

Two sides of a triangle are $4 \mathrm{~cm}\{5 \mathrm{~cm}$. Angle) between them is increasing at the rate of $.06 \mathrm{Rod} / \mathrm{scc} \quad \frac{d \theta}{d t}=.06$
At what rate is its arealchanging when the angle is $\frac{\pi}{3} \quad \frac{d A}{d t} \quad A=\frac{b h}{2}$
$\sin \theta=\frac{h}{4}$

$$
A=\frac{b \cdot 4 \sin \theta}{2}
$$

$$
=\frac{5 \cdot 4 \cdot \sin \theta}{2}
$$

$$
A=10 \sin \theta
$$

$\begin{aligned} A & =\frac{1}{2} a b \operatorname{Sin} C \\ & =\frac{1}{2} b c \operatorname{Sin} A \\ & =\frac{1}{2} a c \operatorname{Sin} B\end{aligned}$

$$
\begin{aligned}
& \frac{d A}{d t}=10 \cdot \cos \theta \cdot \frac{d \theta}{d t} \\
& \begin{aligned}
\frac{d A}{d t} & =10 \cdot \cos \frac{\pi}{3} \cdot(.06) \\
& =10 \cdot \frac{1}{2} \cdot(.06) \\
\frac{d A}{d t} & =.3 \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { try } f(x)=\frac{x^{3}}{x^{2}+1} \text { Domain: }(-\infty, \infty) \\
& x-\text { Int. } \rightarrow y=0 \rightarrow f(x)=0 \rightarrow x^{3}=0 \rightarrow x=0 \\
& (0,0) \\
& Y-\text { Int } \rightarrow x=0 \rightarrow f(0)=\frac{0^{3}}{0^{2}+1}=\frac{0}{1}=0 \\
& f(-x)=\frac{(-x)^{3}}{(-x)^{2}+1}=\frac{-x^{3}}{x^{2}+1}=-\frac{x^{3}}{x^{2}+1}=-f(x) \\
& \text { odd function } \\
& \text { Symmetric with respect to origin }
\end{aligned}
$$

\qquad

Oct 25-11:08 AM

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{x^{2}+1} \\
& f^{\prime}(x)=\frac{x^{4}+3 x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{x^{2}\left(x^{2}+3\right)}{\left(x^{2}+1\right)^{2}} \quad \begin{array}{l}
f^{\prime}(x)=0 \rightarrow x=0 \\
S^{\prime}(x) \text { defined }
\end{array} \\
& f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}} \xrightarrow{f^{\prime \prime}(x)=0 \rightarrow} \quad \begin{array}{l}
\text { everywhere } \\
\longrightarrow
\end{array} \quad x=0 \quad x=0.3=0 \quad x= \pm \sqrt{3} \\
&
\end{aligned}
$$

\qquad
\qquad

$$
\begin{aligned}
& \begin{array}{l}
y=\frac{1}{x^{2}-9} \quad \begin{array}{l}
\text { Domain All Reals except } \pm 3 \\
f(x)=\frac{1}{x^{2}-9} \quad f(-x)=\frac{1}{(-x)^{2}-9}=\frac{1}{x^{2}-9}=f(x) \\
\text { even }
\end{array} \\
y \text { Symmetric } \rightarrow y \text {-axis } \rightarrow x=0 \rightarrow y=\frac{-1}{9} \\
x-\text { Int } \rightarrow y=0 \rightarrow \frac{1}{x^{2}-9} \neq 0 \quad \text { No } x-\text { Int. }
\end{array} \\
& y=\left(x^{2}-9\right)^{-1} \quad y^{\prime}=-1\left(x^{2}-9\right)^{-2} \cdot 2 x=\frac{-2 x}{\left(x^{2}-9\right)^{2}} \\
& y^{\prime \prime}=-2 \cdot \frac{1\left(x^{2}-9\right)^{2}-x \cdot 2\left(x^{2}-9\right)^{1} \cdot 2 x}{\left(x^{2}-9\right)^{4}} \quad \begin{array}{l}
y^{\prime}=0 \rightarrow x=0 \\
y^{\prime} \text { ind. } \rightarrow x= \pm 3
\end{array} \\
& =-2 \cdot \frac{\left(x^{2}-9\right)\left[x^{2}-9-4 x^{2}\right]}{\left(x^{2}-9\right)^{4}}=\frac{-2\left(-3 x^{2}-9\right)}{\left(x^{2}-9\right)^{3}} \\
& y^{\prime \prime}=\frac{6\left(x^{2}+3\right) \quad y^{\prime \prime} \neq 0}{\left(x^{2}-9\right)^{3} \quad y^{\prime \prime} \text { indef. at } \pm 3}
\end{aligned}
$$

Oct 26-11:14 AM

$$
\begin{array}{l|l|l|l}
y^{\prime}=\frac{-2 x}{\left(x^{2}-9\right)^{2}} & y^{\prime \prime}= & \frac{6\left(x^{2}+3\right)}{\left(x^{2}-9\right)^{3}} \\
x & -3 & 0 & 3 \\
\hline f^{\prime}(x) & + & + & - \\
\hline f^{\prime \prime}(x) & + & - & - \\
\hline
\end{array}
$$

